

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

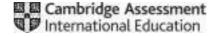
CHEMISTRY 9701/23

Paper 2 AS Structured Questions

October/November 2019

MARK SCHEME
Maximum Mark: 60

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 9 printed pages.

[Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 9

October/November 2019

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 9

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
1(a)(ii)	It oxidises chlorine from –1 to 0	1
1(a)(ii)	effervescence / fizzing / bubbling OR green gas formed OR solid dissolves / disappears / soluble	1
1(b)	M1: decreases (down the group) M2: increasing induced dipoles M3: greater number of electrons	3
1(c)(i)	M1: Cl_2 + 2NaOH \rightarrow NaC l + NaC l O + H $_2$ O M2: chlorine is oxidised and reduced	2
1(c)(ii)	NaCIO ₃ / sodium chlorate(V)	1
1(d)	M1: chloric(I) acid / hypochlorous acid / HClO M2: kills bacteria / micro-organisms / microbes	2
1(e)(i)	ultra-violet (light) / sunlight	1
1(e)(ii)	$C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$	1

© UCLES 2019 Page 4 of 9

9701/23

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question					Answer		Marks
2(a)	Na₂O	MgO	A l ₂ O ₃	SiO ₂	SO ₃		2
	ionic	ionic	ionic	covalent	covalent		
	giant	giant	giant	giant / macro- molecular	simple / molecular		
	Award on	e mark foi	each cor	rect row.			
2(b)(i)	M1 SiO ₂ h	nas a netv	vork of st	rong bonds / SiO ₂	has many strong bo	onds	3
	M2 SO₃ has weak intermolecular forces OR weak VdW forces (between molecules)						
	M3 high(e	er) / more e	energy red	quired to break b	onds than overcome	forces (between molecules)	
2(b)(ii)	M1: react	s with bot	h acid and	l base / alkali			3
	M2 : use a	iny equation	on with Al	₂O₃ and an acid,	e.g. A <i>l</i> ₂ O ₃ + 6HC <i>l</i>	\rightarrow 2A lCl_3 + 3H $_2O$	
	M3: use a	any equati	on with A	l₂O₃ and a base /	alkali, e.g. A <i>l</i> ₂ O ₃ +	2NaOH + $3H_2O \rightarrow 2NaAl(OH)_4$	
2(b)(iii)	solid disse OR gets warn		appears				1
2(c)(i)	octahedra	al					1

© UCLES 2019 Page 5 of 9

Question	Answer	Marks
2(c)(ii)	M1: use of the correct expression in terms of specific bond energies. $(514 - xE_{Se-O} = -346)$	2
	M2: use of correct stoichiometry AND correct processing of expression given in M1. Provided the values 514 and 346 are used. $(514 - 2E_{Se-O} = -346)$	
	$= (+)430 \text{ (kJ mol}^{-1})$	
2(c)(iii)	$SeO_2 + 2NaOH \rightarrow Na_2SeO_3 + H_2O$	1

Question	Answer	Marks
3(a)(i)	cracking	1
3(a)(ii)	enthalpy change of combustion / ΔH_c is high / large energy release (per mole / per unit mass)	1
	OR combust / burn easily	
3(a)(iii)	$C_4H_8 + 4O_2 \rightarrow 4CO + 4H_2O$	1
3(a)(iv)	M1: infrared spectroscopy	2
	M2: Compare / measure (characteristic) wavelengths	
3(b)(i)	$C_4H_4S(I) + 6O_2(g) \rightarrow 4CO_2(g) + 2H_2O(I) + SO_2(g)$	2
	 correct species balancing state symbols Award one mark for two correct bullet points, award two marks for all three correct. 	

© UCLES 2019 Page 6 of 9

Question	Answer	Marks
3(b)(ii)	M1 (enthalpy change when) 1 mol of a substance	2
	M2 EITHER burns / combusts / reacts in excess air / oxygen OR completely burns / combusts / reacts in air / oxygen	
3(b)(iii)	M1 m = 200 and ΔT = 37.5–18.5	2
	M2 $Q = mc \Delta T = 200 \times 4.18 \times (37.5 - 18.5) = 15884 (J)$	
3(b)(iv)	M1 mol of thiophene used = $0.63 / 84.1 \text{ OR } 7.49(1.082.045) \times 10^{-3}$	2
	M2 calculation ÷ 1000 AND negative sign	
	$\Delta H_{c} = \frac{-(iii)}{1000} \div n = \frac{-(iii)}{21000} \div (0.63 / 84.1)$	
	= -2120 (-2120.39) (kJ mol ⁻¹)	

Question	Answer	Marks
4(a)(i)	(2,2–)dimethylpropanal	1
4(a)(ii)	sp ²	1
4(b)(i)	acidified potassium dichromate[(VI)] AND heat under reflux	1
4(b)(ii)	M1: A has H-bonding (between molecules)	3
	M2: B only has dipole–dipole / VdW forces (between molecules)	
	M3: H-bonding is stronger / requires more energy to overcome	
4(b)(iii)	$(CH_3)_3CCHO + 2[H] \rightarrow (CH_3)_3CCH_2OH$	1

© UCLES 2019 Page 7 of 9

9701/23

Question			Answer	Marks
4(b)(iv)	HO			
	M1: I / CH₃CH(OF	I)CH₃		
	M2: H ₂ SO ₄ / sulfuric acid			
4(c)(i)	orange / red / yellow preorange / red / yellow pre			1
4(c)(ii)	Aldehyde			1
4(c)(iii)	has a carbon / atom attache	ed / bonded to four different a	coms / groups / groups of atoms / chains	1
4(c)(iv)	CHO CHO CHO CHO CHO CHO CHO CHO	CH ₃		2
	M2: Correct 3D representation of drawn enantiomer			
4(c)(v)	principal absorptions in the infra-red spectrum	bond responsible		1
	3200–3600 cm ⁻¹	RO-H/O-H		
	1630 cm ⁻¹	C=C		
	1050 cm ⁻¹	C—O		

Page 8 of 9 © UCLES 2019

Question	Answer	Marks
4(c)(vi)	OH OR OH	3
	M1: skeletal alkene group AND C5 structure	
	M2: one alcohol group	
	M3: branched chain AND capable of geometrical isomerism	
4(c)(vii)	M1: Correct structure of X and correct dipole on C=O	3
	M2: curly arrow from C=O bond to O AND intermediate with CN attached and -ve charge on the O	
	M3: curly arrow from lone pair on CN ⁻ to C(=O) in X AND curly arrow from lone pair in the intermediate to H ⁺	
	$\begin{array}{c} \overset{\delta}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$	
4(c)(viii)	catalyst	1

© UCLES 2019 Page 9 of 9